Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 5(1): 1183, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333465

RESUMEN

The relaxin/insulin-like family peptide receptor 2 (RXFP2) belongs to the family of class A G-protein coupled receptors (GPCRs) and it is the only known target for the insulin-like factor 3 peptide (INSL3). The importance of this ligand-receptor pair in the development of the gubernacular ligament during the transabdominal phase of testicular descent is well established. More recently, RXFP2 has been implicated in maintaining healthy bone formation. In this report, we describe the discovery of a small molecule series of RXFP2 agonists. These compounds are highly potent, efficacious, and selective RXFP2 allosteric agonists that induce gubernacular invagination in mouse embryos, increase mineralization activity in human osteoblasts in vitro, and improve bone trabecular parameters in adult mice. The described RXFP2 agonists are orally bioavailable and display favorable pharmacokinetic properties, which allow for future evaluation of the therapeutic benefits of modulating RXFP2 activation in disease models.


Asunto(s)
Relaxina , Masculino , Adulto , Humanos , Ratones , Animales , Relaxina/farmacología , Insulina/farmacología , Receptores Acoplados a Proteínas G/fisiología , Testículo , Hormonas Esteroides Gonadales , Receptores de Péptidos
2.
Biol Reprod ; 107(4): 902-915, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-35766372

RESUMEN

Phosphoinositides (PIs) are relatively rare lipid components of the cellular membranes. Their homeostasis is tightly controlled by specific PI kinases and PI phosphatases. PIs play essential roles in cellular signaling, cytoskeletal organization, and secretory processes in various diseases and normal physiology. Gene targeting experiments strongly suggest that in mice with deficiency of several PI phosphatases, such as Pten, Mtmrs, Inpp4b, and Inpp5b, spermatogenesis is affected, resulting in partial or complete infertility. Similarly, in men, loss of several of the PI phosphatases is observed in infertility characterized by the lack of mature sperm. Using available gene expression databases, we compare the expression of known PI phosphatases in various testicular cell types, infertility patients, and mouse age-dependent testicular gene expression, and discuss their potential roles in testis physiology and spermatogenesis.


Asunto(s)
Infertilidad , Fosfatidilinositoles , Animales , Infertilidad/metabolismo , Fosfatos de Inositol/metabolismo , Masculino , Ratones , Fosfatidilinositoles/metabolismo , Semen/metabolismo , Espermatogénesis/genética , Testículo/metabolismo
3.
Front Physiol ; 12: 650769, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305630

RESUMEN

Diseases, such as diabetes and hypertension, often lead to chronic kidney failure. The peptide hormone relaxin has been shown to have therapeutic effects in various organs. In the present study, we tested the hypothesis that ML290, a small molecule agonist of the human relaxin receptor (RXFP1), is able to target the kidney to remodel the extracellular matrix and reduce apoptosis induced by unilateral ureteral obstruction (UUO). UUO was performed on the left kidney of humanized RXFP1 mice, where the right kidneys served as contralateral controls. Mice were randomly allocated to receive either vehicle or ML290 (30 mg/kg) via daily intraperitoneal injection, and kidneys were collected for apoptosis, RNA, and protein analyses. UUO significantly increased expression of pro-apoptotic markers in both vehicle- and ML290-treated mice when compared to their contralateral control kidneys. Specifically, Bax expression and Erk1/2 activity were upregulated, accompanied by an increase of TUNEL-positive cells in the UUO kidneys. Additionally, UUO induced marked increase in myofibroblast differentiation and aberrant remodeling on the extracellular matrix. ML290 suppressed these processes by promoting a reduction of pro-apoptotic, fibroblastic, and inflammatory markers in the UUO kidneys. Finally, the potent effects of ML290 to remodel the extracellular matrix were demonstrated by its ability to reduce collagen gene expression in the UUO kidneys. Our data indicate that daily administration of ML290 has renal protective effects in the UUO mouse model, specifically through its anti-apoptotic and extracellular matrix remodeling properties.

4.
Commun Biol ; 4(1): 416, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33772116

RESUMEN

A high fat diet and obesity have been linked to the development of metabolic dysfunction and the promotion of multiple cancers. The causative cellular signals are multifactorial and not yet completely understood. In this report, we show that Inositol Polyphosphate-4-Phosphatase Type II B (INPP4B) signaling protects mice from diet-induced metabolic dysfunction. INPP4B suppresses AKT and PKC signaling in the liver thereby improving insulin sensitivity. INPP4B loss results in the proteolytic cleavage and activation of a key regulator in de novo lipogenesis and lipid storage, SREBP1. In mice fed with the high fat diet, SREBP1 increases expression and activity of PPARG and other lipogenic pathways, leading to obesity and non-alcoholic fatty liver disease (NAFLD). Inpp4b-/- male mice have reduced energy expenditure and respiratory exchange ratio leading to increased adiposity and insulin resistance. When treated with high fat diet, Inpp4b-/- males develop type II diabetes and inflammation of adipose tissue and prostate. In turn, inflammation drives the development of high-grade prostatic intraepithelial neoplasia (PIN). Thus, INPP4B plays a crucial role in maintenance of overall metabolic health and protects from prostate neoplasms associated with metabolic dysfunction.


Asunto(s)
Síndrome Metabólico/terapia , Monoéster Fosfórico Hidrolasas/genética , Sustancias Protectoras/farmacología , Transducción de Señal , Animales , Dieta Alta en Grasa/efectos adversos , Masculino , Ratones , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/farmacología
5.
J Endocrinol ; 247(1): R1-R12, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32813485

RESUMEN

Insulin-like 3 peptide (INSL3) is a member of the insulin-like peptide superfamily and is the only known physiological ligand of relaxin family peptide receptor 2 (RXFP2), a G protein-coupled receptor (GPCR). In mammals, INSL3 is primarily produced both in testicular Leydig cells and in ovarian theca cells, but circulating levels of the hormone are much higher in males than in females. The INSL3/RXFP2 system has an essential role in the development of the gubernaculum for the initial transabdominal descent of the testis and in maintaining proper reproductive health in men. Although its function in female physiology has been less well-characterized, it was reported that INSL3 deletion affects antral follicle development during the follicular phase of the menstrual cycle and uterus function. Since the discovery of its role in the reproductive system, the study of INSL3/RXFP2 has expanded to others organs, such as skeletal muscle, bone, kidney, thyroid, brain, and eye. This review aims to summarize the various advances in understanding the physiological function of this ligand-receptor pair since its first discovery and elucidate its future therapeutic potential in the management of various diseases.


Asunto(s)
Insulina/fisiología , Proteínas/fisiología , Animales , Huesos/fisiología , Femenino , Humanos , Células Intersticiales del Testículo , Masculino , Músculo Esquelético/fisiología , Ovario/fisiología , Receptores Acoplados a Proteínas G/fisiología , Reproducción/fisiología , Transducción de Señal , Testículo/fisiología
6.
PLoS Genet ; 16(6): e1008810, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32497091

RESUMEN

Urogenital tract abnormalities are among the most common congenital defects in humans. Male urogenital development requires Hedgehog-GLI signaling and testicular hormones, but how these pathways interact is unclear. We found that Gli3XtJ mutant mice exhibit cryptorchidism and hypospadias due to local effects of GLI3 loss and systemic effects of testicular hormone deficiency. Fetal Leydig cells, the sole source of these hormones in developing testis, were reduced in numbers in Gli3XtJ testes, and their functional identity diminished over time. Androgen supplementation partially rescued testicular descent but not hypospadias in Gli3XtJ mutants, decoupling local effects of GLI3 loss from systemic effects of androgen insufficiency. Reintroduction of GLI3 activator (GLI3A) into Gli3XtJ testes restored expression of Hedgehog pathway and steroidogenic genes. Together, our results show a novel function for the activated form of GLI3 that translates Hedgehog signals to reinforce fetal Leydig cell identity and stimulate timely INSL3 and testosterone synthesis in the developing testis. In turn, exquisite timing and concentrations of testosterone are required to work alongside local GLI3 activity to control development of a functionally integrated male urogenital tract.


Asunto(s)
Criptorquidismo/genética , Regulación del Desarrollo de la Expresión Génica , Células Intersticiales del Testículo/patología , Proteínas del Tejido Nervioso/metabolismo , Diferenciación Sexual/genética , Proteína Gli3 con Dedos de Zinc/metabolismo , Animales , Criptorquidismo/patología , Modelos Animales de Enfermedad , Proteínas Hedgehog/metabolismo , Humanos , Insulina/metabolismo , Células Intersticiales del Testículo/metabolismo , Masculino , Ratones , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas/metabolismo , Transducción de Señal/genética , Testosterona/metabolismo , Proteína Gli3 con Dedos de Zinc/genética
7.
PLoS One ; 15(5): e0233163, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32413098

RESUMEN

Inositol polyphosphate-4-phosphatase type II (INPP4B) is a dual-specificity phosphatase that acts as a tumor suppressor in multiple cancers. INPP4B dephosphorylates phospholipids at the 4th position of the inositol ring and inhibits AKT and PKC signaling by hydrolyzing of PI(3,4)P2 and PI(4,5)P2, respectively. INPP4B protein phosphatase targets include phospho-tyrosines on Akt and phospho-serine and phospho-threonine on PTEN. INPP4B is highly expressed in testes, suggesting its role in testes development and physiology. The objective of this study was to determine whether Inpp4b deletion impacts testicular function in mice. In testis, Inpp4b expression was the highest in postmeiotic germ cells in both mice and men. The testes of Inpp4b knockout male mice were significantly smaller compared to the testes of wild-type (WT) males. Inpp4b-/- males produced fewer mature sperm cells compared to WT, and this difference increased with age and high fat diet (HFD). Reduction in early steroidogenic enzymes and luteinizing hormone (LH) receptor gene expression was detected, although androgen receptor (AR) protein level was similar in WT and Inpp4b-/- testes. Germ cell apoptosis was significantly increased in the knockout mice, while expression of meiotic marker γH2A.X was decreased. Our data demonstrate that INPP4B plays a role in maintenance of male germ cell differentiation and protects testis functions against deleterious effects of aging and high fat diet.


Asunto(s)
Monoéster Fosfórico Hidrolasas/metabolismo , Espermatogénesis/genética , Espermatozoides/metabolismo , Testículo/metabolismo , Animales , Apoptosis/genética , Citocinas/metabolismo , Dieta Alta en Grasa/efectos adversos , Regulación del Desarrollo de la Expresión Génica/genética , Histonas/metabolismo , Humanos , Masculino , Meiosis/genética , Ratones , Ratones Noqueados , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , RNA-Seq , Receptores Androgénicos/metabolismo , Receptores de HL/genética , Receptores de HL/metabolismo , Análisis de la Célula Individual , Recuento de Espermatozoides , Testículo/crecimiento & desarrollo
8.
FASEB J ; 33(11): 12435-12446, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31419161

RESUMEN

Fibrosis is an underlying cause of cirrhosis and hepatic failure resulting in end stage liver disease with limited pharmacological options. The beneficial effects of relaxin peptide treatment were demonstrated in clinically relevant animal models of liver fibrosis. However, the use of relaxin is problematic because of a short half-life. The aim of this study was to test the therapeutic effects of recently identified small molecule agonists of the human relaxin receptor, relaxin family peptide receptor 1 (RXFP1). The lead compound of this series, ML290, was selected based on its effects on the expression of fibrosis-related genes in primary human stellate cells. RNA sequencing analysis of TGF-ß1-activated LX-2 cells showed that ML290 treatment primarily affected extracellular matrix remodeling and cytokine signaling, with expression profiles indicating an antifibrotic effect of ML290. ML290 treatment in human liver organoids with LPS-induced fibrotic phenotype resulted in a significant reduction of type I collagen. The pharmacokinetics of ML290 in mice demonstrated its high stability in vivo, as evidenced by the sustained concentrations of compound in the liver. In mice expressing human RXFP1 gene treated with carbon tetrachloride, ML290 significantly reduced collagen content, α-smooth muscle actin expression, and cell proliferation around portal ducts. In conclusion, ML290 demonstrated antifibrotic effects in liver fibrosis.-Kaftanovskaya, E. M., Ng, H. H., Soula, M., Rivas, B., Myhr, C., Ho, B. A., Cervantes, B. A., Shupe, T. D., Devarasetty, M., Hu, X., Xu, X., Patnaik, S., Wilson, K. J., Barnaeva, E., Ferrer, M., Southall, N. T., Marugan, J. J., Bishop, C. E., Agoulnik, I. U., Agoulnik, A. I. Therapeutic effects of a small molecule agonist of the relaxin receptor ML290 in liver fibrosis.


Asunto(s)
Intoxicación por Tetracloruro de Carbono/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Cirrosis Hepática/tratamiento farmacológico , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores de Péptidos/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Animales , Intoxicación por Tetracloruro de Carbono/genética , Línea Celular Transformada , Proliferación Celular/genética , Citocinas/genética , Citocinas/metabolismo , Humanos , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Ratones , Ratones Transgénicos , Organoides/metabolismo , Organoides/patología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo , Transducción de Señal/genética
9.
Mol Cell Endocrinol ; 487: 12-17, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30625346

RESUMEN

Bone and skeletal muscle are currently considered a unified functional unit, showing complementary regulation at mechanical, biochemical, paracrine and metabolic levels. This functional unit undergoes a central hormonal regulation which is mainly ascribed to sex steroids and, in particular, androgens. However, recent evidence suggest that another testicular hormone lines the classical anabolic effect of testosterone on bone and muscle, the insulin-like peptide 3 (INSL3) acting on its specific receptor RXFP2. This minireview focuses on the most recent findings describing the role of INSL3/RXFP2 axis on the muscolo-skeletal system, from the mechanistic insights to the phenotypic consequences. Pathophysiological and therapeutic widenings deriving from available data are also discussed.


Asunto(s)
Insulina/metabolismo , Sistema Musculoesquelético/metabolismo , Proteínas/metabolismo , Animales , Huesos/metabolismo , Humanos , Músculos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal
10.
Mol Cell Endocrinol ; 487: 40-44, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30590098

RESUMEN

The peptide hormone relaxin has beneficial roles in several organs through its action on its cognate G protein-coupled receptor, RXFP1. Relaxin administration is limited to intravenous, subcutaneous, intramuscular, or spinal injection. Another drawback of peptide-based therapy is the short half-life, which requires continuous delivery of the drug to achieve efficient concentration in target organs. The discovery of a non-peptide small molecule agonist of RXFP1, ML290, provides an alternative to the natural ligand. This review summarizes the development of ML290 and its potential future therapeutic applications in various diseases, including liver fibrosis and cardiovascular diseases. We also discuss the development of small molecule agonists targeting the insulin-like 3 receptor, RXFP2, and propose the potential use of these small molecules in the context of bone and muscle remodeling.


Asunto(s)
Insulinas/metabolismo , Receptores de Péptidos/metabolismo , Relaxina/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Humanos , Terapia Molecular Dirigida , Transducción de Señal
11.
Artículo en Inglés | MEDLINE | ID: mdl-30323788

RESUMEN

Androgens are primarily involved in muscle growth, whilst disease-driven muscle wasting is frequently associated with hypogonadism. The Leydig cells of the testes also produce the peptide-hormone Insulin-like peptide 3 (INSL3). INSL3 displays anabolic activity on bone, a target tissue of androgens, and its plasma concentrations are diminished in male hypogonadism. Here we tested the role of INSL3 on muscle mass regulation, in physiological and pathological conditions. Studies on C2C12 cell line showed that INSL3, acting on his specific receptor RXFP2, promotes skeletal muscle protein synthesis through the Akt/mTOR/S6 pathway. Next, studies on Rxfp2 -/- mice showed that INSL3 is required to prevent excessive muscle loss after denervation. Mechanistically, denervated Rxfp2 -/- mice lacked the compensatory activation of the Akt/mTOR/S6 pathway and showed an abnormal ubiquitin-proteasome system activation. Lack of INSL3 activity resulted also in reduced contractile force. These findings underlie a role of INSL3/RXFP2 in protein turnover, contributing to muscle wasting in male hypogonadism.

12.
Eur J Med Chem ; 156: 79-92, 2018 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-30006176

RESUMEN

A dose responsive quantitative high throughput screen (qHTS) of >350,000 compounds against a human relaxin/insulin-like family peptide receptor (RXFP1) transfected HEK293 cell line identified 2-acetamido-N-phenylbenzamides 1 and 3 with modest agonist activity. An extensive structure-activity study has been undertaken to optimize the potency, efficacy, and physical properties of the series, resulting in the identification of compound 65 (ML-290), which has excellent in vivo PK properties with high levels of systemic exposure. This series, exemplified by 65, has produced first-in-class small-molecule agonists of RXFP1 and is a potent activator of anti-fibrotic genes.


Asunto(s)
Benzamidas/química , Benzamidas/farmacología , Células Estrelladas Hepáticas/efectos de los fármacos , Receptores Acoplados a Proteínas G/agonistas , Receptores de Péptidos/agonistas , Transcriptoma/efectos de los fármacos , Animales , Benzamidas/farmacocinética , Línea Celular , Células HEK293 , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Humanos , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Ratones Endogámicos C57BL , Modelos Moleculares , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacocinética , Bibliotecas de Moléculas Pequeñas/farmacología
13.
FASEB J ; : fj201800437R, 2018 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-29882709

RESUMEN

The pathophysiology of arteriovenous fistula (AVF) maturation failure is not completely understood but impaired outward remodeling (OR) and intimal hyperplasia are thought to be contributors. This adverse vascular response after AVF surgery results from interplay between vascular smooth muscle cells (VSMCs), the extracellular matrix (ECM), and inflammatory cells. Relaxin (RLN) is a hormone that acts on the vasculature via interaction with RLN/insulin-like peptide family receptor 1 (RXFP1), resulting in vasodilatation, ECM remodeling, and decreased inflammation. In the present study, we evaluated the consequences of RXFP1 knockout ( Rxfp1-/-) on AVF maturation in a murine model of AVF failure. Rxfp1-/- mice showed a 22% decrease in vessel size at the venous outflow tract 14 d after AVF surgery. Furthermore, a 43% increase in elastin content was observed in the lesions of Rxfp1-/- mice and coincided with a 41% reduction in elastase activity. In addition, Rxfp1-/- mice displayed a 6-fold increase in CD45+ leukocytes, along with a 2-fold increase in monocyte chemoattractant protein 1 (MCP1) levels, when compared with wild-type mice. In vitro, VSMCs from Rxfp1-/- mice exhibited a synthetic phenotype, as illustrated by augmentation of collagen, fibronectin, TGF-ß, and platelet-derived growth factor mRNA. In addition, VSMCs derived from Rxfp1-/- mice showed a 5-fold increase in cell migration. Finally, RXFP1 and RLN expression levels were increased in human AVFs when compared with unoperated cephalic veins. In conclusion, RXFP1 deficiency hampers elastin degradation and results in induced vascular inflammation after AVF surgery. These processes impair OR in murine AVF, suggesting that the RLN axis could be a potential therapeutic target for promoting AVF maturation.-Bezhaeva, T., de Vries, M. R., Geelhoed, W. J., van der Veer, E. P., Versteeg, S., van Alem, C. M. A., Voorzaat, B. M., Eijkelkamp, N., van der Bogt, K. E., Agoulnik, A. I., van Zonneveld, A.-J., Quax, P. H. A., Rotmans, J. I. Relaxin receptor deficiency promotes vascular inflammation and impairs outward remodeling in arteriovenous fistulas.

14.
J Endocr Soc ; 1(6): 712-725, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28825052

RESUMEN

Relaxin, a small peptide hormone of the insulin/relaxin family, demonstrated antifibrotic, organ protective, vasodilatory, and proangiogenic properties in clinical trials and several animal models of human diseases. Relaxin family peptide receptor 1 (RXFP1) is the relaxin cognate G protein-coupled receptor. We have identified a series of small molecule agonists of human RXFP1. The lead compound ML290 demonstrated preferred absorption, distribution, metabolism, and excretion profiles, is easy to synthesize, and has high stability in vivo. However, ML290 does not activate rodent RXFP1s and therefore cannot be tested in common preclinical animal models. Here we describe the production and analysis of a mouse transgenic model, a knock-out/knock-in of the human RXFP1 (hRXFP1) complementary DNA into the mouse Rxfp1 (mRxfp1) gene. Insertion of the vector into the mRxfp1 locus caused disruption of mRxfp1 and expression of hRXFP1. The transcriptional expression pattern of the hRXFP1 allele was similar to mRxfp1. Female mice homozygous for hRXFP1 showed relaxation of the pubic symphysis at parturition and normal development of mammary nipples and vaginal epithelium, indicating full complementation of mRxfp1 gene ablation. Intravenous injection of relaxin led to an increase in heart rate in humanized and wild-type females but not in Rxfp1-deficient mice, whereas ML290 increased heart rate in humanized but not wild-type animals, suggesting specific target engagement by ML290. Moreover, intraperitoneal injection of ML290 caused a decrease in blood osmolality. Taken together, our data show humanized RXFP1 mice can be used for testing relaxin receptor modulators in various preclinical studies.

15.
Sci Rep ; 7(1): 2968, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28592882

RESUMEN

Activation of the relaxin receptor RXFP1 has been associated with improved survival in acute heart failure. ML290 is a small molecule RXFP1 agonist with simple structure, long half-life and high stability. Here we demonstrate that ML290 is a biased agonist in human cells expressing RXFP1 with long-term beneficial actions on markers of fibrosis in human cardiac fibroblasts (HCFs). ML290 did not directly compete with orthosteric relaxin binding and did not affect binding kinetics, but did increase binding to RXFP1. In HEK-RXFP1 cells, ML290 stimulated cAMP accumulation and p38MAPK phosphorylation but not cGMP accumulation or ERK1/2 phosphorylation although prior addition of ML290 increased p-ERK1/2 responses to relaxin. In human primary vascular endothelial and smooth muscle cells that endogenously express RXFP1, ML290 increased both cAMP and cGMP accumulation but not p-ERK1/2. In HCFs, ML290 increased cGMP accumulation but did not affect p-ERK1/2 and given chronically activated MMP-2 expression and inhibited TGF-ß1-induced Smad2 and Smad3 phosphorylation. In vascular cells, ML290 was 10x more potent for cGMP accumulation and p-p38MAPK than for cAMP accumulation. ML290 caused strong coupling of RXFP1 to Gαs and GαoB but weak coupling to Gαi3. ML290 exhibited signalling bias at RXFP1 possessing a signalling profile indicative of vasodilator and anti-fibrotic properties.


Asunto(s)
Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores de Péptidos/agonistas , Receptores de Péptidos/química , Regulación Alostérica , Células Cultivadas , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Cinética , Ligandos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , Modelos Moleculares , Conformación Molecular , Mioblastos/metabolismo , Fosforilación , Unión Proteica , Relaxina/química , Relaxina/farmacología , Transducción de Señal , Proteína Smad2/metabolismo , Proteína smad3/metabolismo
16.
Br J Pharmacol ; 174(10): 977-989, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27771940

RESUMEN

Relaxin is a small heterodimeric peptide hormone of the insulin/relaxin superfamily produced mainly in female and male reproductive organs. It has potent antifibrotic, vasodilatory and angiogenic effects and regulates the normal function of various physiological systems. Preclinical studies and recent clinical trials have shown the promise of recombinant relaxin as a therapeutic agent in the treatment of cardiovascular and fibrotic diseases. However, there are the universal drawbacks of peptide-based pharmacology that apply to relaxin: a short half-life in vivo requires its continuous delivery, and there are high costs of production, storage and treatment, as well as the possibility of immune responses. All these issues can be resolved by the development of low non-peptide MW agonists of the relaxin receptors which are stable, bioavailable, easily synthesized and specific. In this review, we describe the discovery and characterization of the first series of such compounds. The lead compound, ML290, binds to an allosteric site of the relaxin GPCR, RXFP1. ML290 shows high activity and efficacy, measured by cAMP response, in cells expressing endogenous or transfected RXFP1. Relaxin-like effects of ML290 were shown in various functional cellular assays in vitro. ML290 has excellent absorption, distribution, metabolism and excretion properties and in vivo stability. The identified series of low MW agonists does not activate rodent RXFP1 receptors and thus, the production of a RXFP1 humanized mouse model is needed for preclinical studies. The future analysis and clinical perspectives of relaxin receptor agonists are discussed. LINKED ARTICLES: This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.


Asunto(s)
Receptores Acoplados a Proteínas G/agonistas , Receptores de Péptidos/agonistas , Animales , Humanos , Peso Molecular , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo
17.
Br J Pharmacol ; 174(10): 990-1001, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27933606

RESUMEN

The relaxin family of peptide hormones and their cognate GPCRs are becoming physiologically well-characterized in the cardiovascular system and particularly in female reproductive processes. Much less is known about the physiology and pharmacology of these peptides in male reproduction, particularly as regards humans. H2-relaxin is involved in prostate function and growth, while insulin-like peptide 3 (INSL3) is a major product of the testicular Leydig cells and, in the adult, appears to modulate steroidogenesis and germ cell survival. In the fetus, INSL3 is a key hormone expressed shortly after sex determination and is responsible for the first transabdominal phase of testicular descent. Importantly, INSL3 is becoming a very useful constitutive biomarker reflecting both fetal and post-natal development. Nothing is known about roles for INSL4 in male reproduction and only very little about relaxin-3, which is mostly considered as a brain peptide, or INSL5. The former is expressed at very low levels in the testes, but has no known physiology there, whereas the INSL5 knockout mouse does exhibit a testicular phenotype with mild effects on spermatogenesis, probably due to a disruption of glucose homeostasis. INSL6 is a major product of male germ cells, although it is relatively unexplored with regard to its physiology or pharmacology, except that in mice disruption of the INSL6 gene leads to a disruption of spermatogenesis. Clinically, relaxin analogues may be useful in the control of prostate cancer, and both relaxin and INSL3 have been considered as sperm adjuvants for in vitro fertilization. LINKED ARTICLES: This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.


Asunto(s)
Relaxina/metabolismo , Reproducción , Animales , Humanos , Masculino , Relaxina/análogos & derivados , Relaxina/química
18.
Clin Cancer Res ; 22(15): 3937-49, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-26968201

RESUMEN

PURPOSE: Castration therapy in advanced prostate cancer eventually fails and leads to the development of castration-resistant prostate cancer (CRPC), which has no cure. Characteristic features of CRPC can be increased androgen receptor (AR) expression and altered transcriptional output. We investigated the expression of nuclear receptor corepressor 1 (NCOR1) in human prostate and prostate cancer and the role of NCOR1 in response to antiandrogens. EXPERIMENTAL DESIGN: NCOR1 protein levels were compared between matched normal prostate and prostate cancer in 409 patient samples. NCOR1 knockdown was used to investigate its effect on bicalutamide response in androgen-dependent prostate cancer cell lines and transcriptional changes associated with the loss of NCOR1. NCOR1 transcriptional signature was also examined in prostate cancer gene expression datasets. RESULTS: NCOR1 protein was detected in cytoplasm and nuclei of secretory epithelial cells in normal prostate. Both cytoplasmic and nuclear NCOR1 protein levels were lower in prostate cancer than in normal prostate. Prostate cancer metastases show significant decrease in NCOR1 transcriptional output. Inhibition of LNCaP cellular proliferation by bicalutamide requires NCOR1. NCOR1-regulated genes suppress cellular proliferation and mediate bicalutamide resistance. In the mouse, NCOR1 is required for bicalutamide-dependent regulation of a subset of the AR target genes. CONCLUSIONS: In summary, we demonstrated that NCOR1 function declines with prostate cancer progression. Reduction in NCOR1 levels causes bicalutamide resistance in LNCaP cells and compromises response to bicalutamide in mouse prostate in vivo Clin Cancer Res; 22(15); 3937-49. ©2016 AACR.


Asunto(s)
Expresión Génica , Co-Represor 1 de Receptor Nuclear/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Antagonistas de Andrógenos/farmacología , Antagonistas de Andrógenos/uso terapéutico , Andrógenos/metabolismo , Andrógenos/farmacología , Anilidas/farmacología , Anilidas/uso terapéutico , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Humanos , Masculino , Ratones , Ratones Transgénicos , Metástasis de la Neoplasia , Nitrilos/farmacología , Nitrilos/uso terapéutico , Co-Represor 1 de Receptor Nuclear/metabolismo , Neoplasias de la Próstata/terapia , Interferencia de ARN , Compuestos de Tosilo/farmacología , Compuestos de Tosilo/uso terapéutico , Transcriptoma
19.
Biochemistry ; 55(12): 1772-83, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26866459

RESUMEN

The GPCR relaxin family peptide receptor 1 (RXFP1) mediates the action of relaxin peptide hormone, including its tissue remodeling and antifibrotic effects. The peptide has a short half-life in plasma, limiting its therapeutic utility. However, small-molecule agonists of human RXFP1 can overcome this limitation and may provide a useful therapeutic approach, especially for chronic diseases such as heart failure and fibrosis. The first small-molecule agonists of RXFP1 were recently identified from a high-throughput screening, using a homogeneous cell-based cAMP assay. Optimization of the hit compounds resulted in a series of highly potent and RXFP1 selective agonists with low cytotoxicity, and excellent in vitro ADME and pharmacokinetic properties. Here, we undertook extensive site-directed mutagenesis studies in combination with computational modeling analysis to probe the molecular basis of the small-molecule binding to RXFP1. The results showed that the agonists bind to an allosteric site of RXFP1 in a manner that closely interacts with the seventh transmembrane domain (TM7) and the third extracellular loop (ECL3). Several residues were determined to play an important role in the agonist binding and receptor activation, including a hydrophobic region at TM7 consisting of W664, F668, and L670. The G659/T660 motif within ECL3 is crucial to the observed species selectivity of the agonists for RXFP1. The receptor binding and activation effects by the small molecule ML290 were compared with the cognate ligand, relaxin, providing valuable insights on the structural basis and molecular mechanism of receptor activation and selectivity for RXFP1.


Asunto(s)
Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/agonistas , Receptores de Péptidos/metabolismo , Relaxina/metabolismo , Secuencia de Aminoácidos , Animales , Células HEK293 , Humanos , Macaca , Ratones , Datos de Secuencia Molecular , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ratas , Receptores Acoplados a Proteínas G/química , Receptores de Péptidos/química , Relaxina/farmacología , Porcinos
20.
Biol Reprod ; 94(3): 67, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26843448

RESUMEN

The Notch signaling pathway is critical for the differentiation of many tissues and organs in the embryo. To study the consequences of Notch1 gain-of-function signaling on female reproductive tract development, we used a cre-loxP strategy and Amhr2-cre transgene to generate mice with conditionally activated Notch1 (Rosa(Notch1)). The Amhr2-cre transgene is expressed in the mesenchyme of developing female reproductive tract and in granulosa cells in the ovary. Double transgenic Amhr2-cre, Rosa(Notch1) females were infertile, whereas control Rosa(Notch1) mice had normal fertility. All female reproductive organs in mutants showed hemorrhaging of blood vessels progressing with age. The mutant oviducts did not develop coiling, and were instead looped around the ovary. There were multiple blockages in the lumen along the oviduct length, creating a barrier for sperm or oocyte passage. Mutant females demonstrated inflamed uteri with increased vascularization and an influx of inflammatory cells. Additionally, older females developed ovarian, oviductal, and uterine cysts. The significant change in gene expression was detected in the mutant oviduct expression of Wnt4, essential for female reproductive tract development. Similar oviductal phenotypes have been detected previously in mice with activated Smo and in beta-catenin, Wnt4, Wnt7a, and Dicer conditional knockouts, indicating a common regulatory pathway disrupted by these genetic abnormalities.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Neovascularización Patológica/metabolismo , Quistes Ováricos/metabolismo , Oviductos/anomalías , Receptor Notch1/metabolismo , Animales , Femenino , Fertilidad , Genes Transgénicos Suicidas , Ratones , Mutación , Oviductos/crecimiento & desarrollo , Receptor Notch1/genética , Transducción de Señal , Regulación hacia Arriba , Útero/irrigación sanguínea , Útero/patología , Trombosis de la Vena
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...